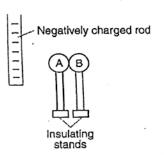
- 1. Two objects, A and B are rubbed together. If object A acquires an excess of 100 electrons object B must have
 - (1) gained 100 electrons
- (3) lost 100 electrons
- (2) gained 100 protons
- (4) lost 100 protons
- 2. Two metal spheres having charges of $+4.0 \times 10^{-6}$ coulomb and $+2.0 \times 10^{-5}$ coulomb, respectively, are brought into contact and then separated. After separation, the charge on each sphere is
 - (1) $8.0 \times 10^{-11} C$
- (3) $2.1 \times 10^{-6} C$
- (2) 8.0×10^{-6} C
- (4) 1.2×10^{-5} C
- 3. A glass rod is given a positive charge by rubbing it with silk. The rod has become positive by
 - (1) gaining electrons
- (3) losing electrons
- (2) gaining protons
- (4) losing protons
- 4. An object possessing an excess of 6.0×10^6 electrons has a net charge of
 - (1) $2.7 \times 10^{-26} C$
- (3) $3.8 \times 10^{-13} C$
- (2) $5.5 \times 10^{-24} C$
- $(4)^{\circ} 9.6 \times 10^{-13} C$
- 5. An object can not have a charge of
 - (1) $3.2 \times 10^{-19} C$
- (3) $8.0 \times 10^{-19} C$
- (2) $4.5 \times 10^{-19} C$
- (4) $9.6 \times 10^{-19} C$
- 6. What is the smallest electric charge that can be put on an object?
 - (1) $9.11 \times 10^{-31} C$
- (3) $9.00 \times 10^9 C$
- (2) $1.60 \times 10^{-19} C$
- (4) $6.25 \times 10^{18} C$
- 7. Metal sphere Ah i charge of +12 elementary charges and iden. I sphere B has a charge of +16 elementary charges. After the two spheres are brought into contact, the charge on sphere A is
 - (1) -2 elementary charges
 - (2) +2 elementary charges
 - (3) +14 elementary charges
 - (4) +28 elementary charges
- As the electric charge on the surface of a hollow metal sphere increases, the electric field intensity inside the sphere
 - (1) decreases
- (3) remains the same
- (2) increases

9. The diagram below shows two identical metal spheres, A and B, on insulated stands. Each sphere possesses a net charge of -3×10^{-6} coulomb.

 $-3 \times 10^{-6} \text{ C}$ $-3 \times 10^{-6} \text{ C}$



If the spheres are brought into contact with each other and then separated, the charge on sphere ${\cal A}$ will be

 $(1) \ 0 \ C$

- $(3) -3 \times 10^{-6} C$
- $(2) +3 \times 10^{-6} C$
- $(4) -6 \times 10^{-6} C$
- 10. Two electrically neutral metal spheres, A and B, on insulating stands are placed in contact with each other. A negatively charged rod is brought near, but does not touch the spheres, as shown in the diagram below.

How are the spheres now charged?

- (1) A is positive and B is positive.
- (2) A is positive and B is negative.
- (3) A is negative and B is positive.
- (4) A is negative and B is negative.
- 11. What is the approximate electrostatic force between two protons separated by a distance of 1.0×10^{-6} meter?
 - (1) 2.3×10^{-16} N and repulsive
 - (2) 2.3×10^{-16} N and attractive
 - (3) 9.0×10^{21} N and repulsive
 - (4) 9.0×10^{21} N and attractive