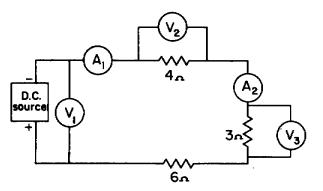

Period

1. The diagram below shows a circuit with three resistors.

What is the resistance of resistor *R*₃?


- A) 6.0 Ω B) 2.0 Ω
- C) 12 Ω D) 4.0 Ω
- 2. Base your answer to the following question on the diagram below.

What is the total resistance of the circuit?

Α) 0.500 Ω	B)	2.00	Ω
------------	----	------	---

- C) 3.00 Ω D) 4.00 Ω
- Base your answer to the following question on the diagram below. The reading of voltmeter V₁ is 26 volts, and the reading of ammeter A₁ is 2 amperes.

What is the total resistance of the circuit?

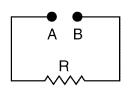
Α) 3/4 Ω	B) 4/3 Ω
C) 10 Ω	D) 13 Ω

4. A 2.0-ohm resistor and a 4.0-ohm resistor are connected in series with a 12-volt battery. If the current through the 2.0-ohm resistor is 2.0 amperes, the current through the 4.0-ohm resistor is

A) 1.0 A	B) 2.0 A
C) 3.0 A	D) 4.0 A

5. A 9.0-volt battery is connected to a 4.0-ohm resistor and a 5.0-ohm resistor as shown in the diagram below.

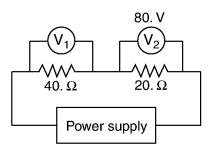
$$\begin{array}{c} & & & \\ & & & \\ \hline & & & \\ \hline & & & \\ \end{array} = 9.0 \ V \qquad 5.0 \ \Omega \end{array}$$


What is the current in the 5.0-ohm resistor?

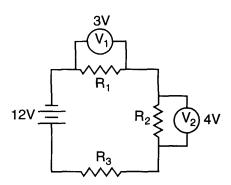
A)	1.0 A	B) 2.3 A
C)	1.8 A	D) 4.0 A

6. A 10.-ohm resistor and a 20.-ohm resistor are connected in series to a voltage source. When the current through the 10.-ohm resistor is 2.0 amperes, what is the current through the 20.-ohm resistor?

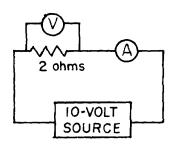
A) 1.0 A	B) 2.0 A
C) 0.50 A	D) 4.0 A


7. What must be inserted between points *A* and *B* to establish a steady electric current in the incomplete circuit represented in the diagram below?

A) switch

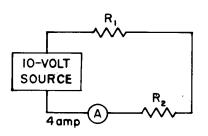

- B) voltmeter
- C) magnetic field source
- D) source of potential difference

8. In the circuit shown below, voltmeter *V*₂ reads 80. volts.

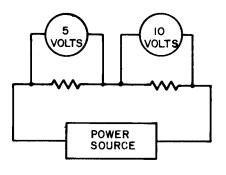

What is the reading of voltmeter V_1 ?

- A) 160 VB) 80. VC) 40. VD) 20. V
- 9. The diagram below shows three resistors, *R*₁, *R*₂, and *R*₃, connected to a 12-volt battery.

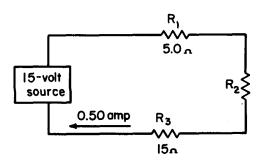
If voltmeter V_1 reads 3 volts and voltmeter V_2 reads 4 volts, what is the potential drop across resistor R_3 ?


- A) 12 V B) 5 V C) 0 V D) 4 V
- 10. Base your answer to the following question on the diagram below.

The reading of voltmeter V will be


A) 0.2 volt	B) 5 volts
C) 10 volts	D) 20 volts

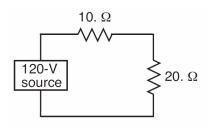
11. Base your answer to the following question on the circuit diagram below.


The voltage drop at R_1 will be

- A) less than 10 volts
- B) 10 volts
- C) 20 volts
- D) more than 20 volts
- 12. What is the voltage of the power supply shown on the below?

A)	0.5 volt	B)	10 volts
C)	15 volts	D)	50 volts

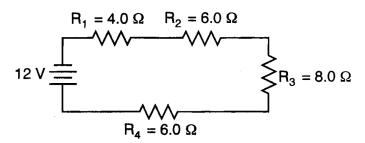
Base your answers to questions **13** through **15** on the diagram below which shows 3 resistors connected to a 15-volt source.


- 13. If resistor *R*³ is removed and replaced by a resistor of lower value, the resistance of the circuit will
 - A) decrease B) increase
 - C) remain the same
- 14. The total resistance of the circuit is

A) 10 Ω	B) 20 Ω
C) 30 Ω	D) 40 Ω

15. The potential difference across R_2 is

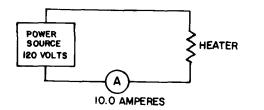
A)	2.5 V	B)	5.0 V
C)	7.5 V	D)	10 V


16. The diagram below represents a circuit consisting of two resistors connected to a source of potential difference.

What is the current through the 20.-ohm resistor?

A)	0.25 A	B)	6.0 A
C)	12 A	D)	4.0 A

17. The circuit diagram below represents four resistors connected to a 12-volt source.

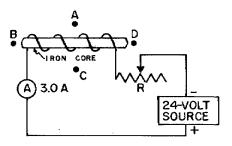

What is the total current in the circuit?

A) 0.50 A B) 2.0 A C) 8.6 A

18. A 3.0-ohm resistor arid a 6.0-ohm resistor are connected in series in an operating electric circuit. If the current through the 3.0-ohm resistor is 4.0 amperes, what is the potential difference across the 6.0-ohm resistor?

A) 8.0 V	B) 2.0 V
C) 12 V	D) 24 V

19. Base your answer to the following question on on the circuit diagram shown below of a 120-volt power source running a heater that draws 10.0 amperes of current.



The resistance of the heater has a value of

A)	0.083 ohm	B)	12 ohm
11)	0.005 01111	D)	12 Umm

- C) 130 ohms
- B) 12 ohmsD) 1,200 ohms

- D) 24 A
- 20. Base your answer to the following question on the circuit diagram below which represents a solenoid in series with a variable resistor and a voltage source.

The resistance of the circuit is

A)	72 Ω	B)	24 Ω
C)	12 Ω	D)	8.0 Ω