Name

1. A 1000-kilogram car traveling due east at 15 meters per second is hit from behind and receives a forward impulse of 6000 newton-seconds. Determine the magnitude of the car's change in momentum due to this impulse.

Base your answers to questions 2 through 4 on the information and diagram below.

A 10.-kilogram box, sliding to the right across a rough horizontal floor, accelerates at -2.0meters per second² due to the force of friction.

Rough floor

2. Calculate the coefficient of kinetic friction between the box and the floor. [Show all work, including the equation and substitution with units.] 3. On the diagram provided, draw a vector representing the net force acting on the box. Begin the vector at point *P* and use a scale of 1.0 centimeter = 5.0newtons.

4. Calculate the magnitude of the net force acting on the box. [Show all work, including the equation and substitution with units.]

5. The gravitational force of attraction between Earth and the Sun is 3.52×10^{22} newtons. Calculate the mass of the Sun. [Show all work, including the equation and substitution with units.]

6. A truck traveling at a constant speed covers the same total distance as the car in the same 5.0-second time interval. Determine the speed of the truck.	 Base your answers to questions 6 and 7 on the information below. A car traveling at a speed of 13 meters per second accelerates uniformly to a speed of 25 meters per second in 5.0 seconds. 6. A truck traveling at a constant speed covers the same total distance as the car in the same 5.0-second time interval. Determine the speed of the truck. 	7. Calculate the magnitude of the acceleration of the car during this 5.0-second time interval. [Show all work, including the equation and substitution with units.]
--	---	--